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Abstract
Reduced-order models encapsulating complex whole-body dynamics have facilitated stable walking in various
bipedal robots. These models have enabled intermittent control methods by applying control inputs intermittently
(alternating between zero input and feedback input), allowing robots to follow natural dynamics and provide ener-
getically and computationally efficient walking. However, due to their inability to derive closed-form solutions for
the angular momentum generated by swing motions and other dynamic actions, constructing a precise model for
the walking phase with zero input is challenging, and controlling walking behavior using an intermittent controller
remains problematic. This paper proposes an intermittent controller for bipedal robots, modeled as a multi-mass
system consisting of an inverted pendulum and an additional mass representing the swing leg. The proposed con-
troller alternates between feedback control during the double support (DS) phase and zero-input control during the
single support (SS) phase. By deriving a constrained trajectory, the system behaves as a conservative system during
the SS phase, enabling closed-form solutions to the equations of motion. This constraint allows the robot to track
the target behavior accurately, intermittently adjusting energy during the DS phase. The effectiveness of the pro-
posed method is validated through simulations and experiments with a bipedal robot, demonstrating its capability
to accurately and stably track the target walking velocity using intermittent control.

1. Introduction
Difficulties in the locomotion of humanoid robots include how to represent the dynamics of the robot
[39] and how to control the inherently unstable dynamics [1, 24, 34]. Recent strategies have integrated
whole-body dynamics models into both the planner [22, 27] and the controller [20, 30], addressing
these issueseffectively.However, while these methods enhance stability and accommodate a variety of
motions, they require extensive computational resources, making online planning for extended durations
difficult. In contrast, reduced-order models present a more traditional yet robust approach, enabling
effective planning and control with greater simplicity and reduced computational cost.

Original control methods using reduced-order models such as the linear inverted pendulum (LIP)
[13], spring-loaded inverted pendulum (SLIP) [29], and inverted pendulum (IP) models [10, 23] gov-
ern robot locomotion through intermittent control inputs. Motion during longer locomotion phases
(e.g., the single support (SS) phase of walking or the flight phase of running) is governed by zero inputs
to the model (no control), while motion during other short phases is controlled through feedback inputs,
such as foot placement and kicking. In other words, these controllers intermittently apply control inputs
and can thus be referred to as ”intermittent controllers” [4, 8]. During the longer phase, models like
LIP generate specific forces (model’s force) that yield closed-form solutions to the equations of motion
(EoM). Consequently, the motion in the longer phase is uniquely determined, while feedback inputs
during the short phase facilitate precise control of the robot’s motion. Here, this phase has no control
input except the model’s force, then, we refer to this as zero input and/or no control. These intermittent
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control strategies, leveraging models with closed-form solutions, are powerful tools due to their low
computational complexity. Moreover, these controllers allow robots to follow the natural dynamics of
the model itself, enabling energetically and computationally efficient walking.

For example, the original LIP model control method using ”orbital energy” [14], the extended LIP
model control method using ”capture point” [28], and the SLIP model control method (widely known
as the Raibert controller) [10, 29] are all examples of intermittent controllers. Kajita et al. proposed the
concept of orbital energy, a conserved energy form that modulates energy at switching times, and the
positions of foot touchdowns to control walking speed [14]. Similarly, Pratt et al. introduced the capture
point, the location, and the timing of foot placement required to stop the robot in an upright posture. This
point is derived by solving for when the orbital energy equals zero and is used to adjust foot touchdown
positions to control walking speed [28]. Both approaches employ intermittent feedback controllers to
adjust leg touchdown positions. Additionally, the Raibert controller for running incorporates kick control
just before the foot leaves the ground into a feedback controller, along with foot placement control
[29, 32]. While similar to other controllers in some ways, this method is simple and versatile, extending
to various robotic gait motions, including both running and walking [10].

These intermittent controllers for walking are supposed to follow models such as LIP, IP, or SLIP.
Therefore, during the longer phase, the robot is required to generate the specified force to follow the
model without any other additional forces. However, humanoid robots generate angular momentum
through upper body and limb movements, especially during swing motions, generating additional force.
In practical implementation, to ignore the momentum, robots often use very lightweight legs to align
with these models [11, 14, 29, 38]. Robot hardware designed to minimize discrepancies in the walking
model ensures that the controller does not need to correct model errors. However, developing these
ultralight legs for full-sized humanoid robots is very difficult. Even when the leg mass is significantly
less than the total body mass (e.g., total body mass to swing-leg mass ratio = 10:1 [15]), the angular
momentum arising from its swing motion cannot be ignored.

A recent trend in control frameworks involves methods that include a center of mass (CoM) controller
and a whole-body stabilizer [34]. In such frameworks, both the controller and the stabilizer continuously
calculate control inputs (referred to as the ”continuous feedback controller”), while the whole-body
stabilizer compensates for inaccuracies caused by modeling errors in reduced-order models. However,
this continuous feedback control approach often leads to energetically inefficient movements due to
additional compensatory actions, resulting in higher energy consumption and significant computational
cost. Furthermore, recent studies have shifted toward sequentially optimizing centroidal dynamics that
consider angular momentum [9, 25]. While these methods enable the generation of diverse trajectories by
accounting for the angular momentum of the robot’s limbs and upper body, they make it difficult to obtain
closed-form solutions of the EoM, thereby increasing the computational resources required for trajectory
planning. Although the intermittent controller offers reduced energy consumption and computational
cost by applying control inputs only at discrete intervals, it has not been widely adopted recently. One
major challenge is that the intermittent controller is more affected by modeling errors compared to the
latest approaches. During its no-control duration, stability heavily relies on the accuracy of the model.
Most models used for intermittent control assume zero angular momentum; however, actual humanoid
robots generate angular momentum through upper body and limb movements, especially during rapid
swing motions.

To address these issues, some studies have proposed multi-mass models by adding additional masses
to the base model (e.g., the LIP model [5, 16, 17, 36] or the SLIP model [26]). However, the cou-
pled dynamics between the base model’s CoM and the additional masses render the models nonlinear,
necessitating the determination of the trajectories for each additional mass before calculating the CoM
trajectory [6, 31, 33, 36]. Although these computations are feasible with numerical integration of the
EoM, they require iterative calculations to attain the target behavior, and variations in the integration
paths can lead to incremental errors in the model. Most models rely on closed-form solutions derived
from single-mass models [17] or adopt multi-mass representations without such solutions [26], requiring
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(a) (b)

Figure 1. Definition of mass model and the proposed constrained model. Panel (a) displays a mul-
ti-mass model. Panel (b) indicates an overview of the constrained position trajectory in the proposed
method. Parameter definitions are shown in Table I.

compensatory controllers to address modeling inaccuracies and complicating the design of intermittent
control strategies. In other cases, imposing a constant height condition on both the base model and
additional masses can linearize the dynamics, enabling closed-form solutions. However, this approach
forces a constant height for the swing-leg CoM, resulting in an unrealistic shuffle gait for the robot [7].
Consequently, these methods often produce unrealistic trajectories or cannot provide closed-form solu-
tions for the EoM. To apply the intermittent controller, it is essential to have a model for which the EoM
can be analytically solved, even for the motion of a multi-mass model. If constraints could be devised
that allow the model’s EoM, incorporating angular momentum generated by leg inertia, to have closed-
form solutions, it would eliminate the need to unrealistically reduce leg mass and implement inefficient
corrections, potentially enabling robot behavior to be controlled through a straightforward intermittent
controller.

In this paper, we propose a multi-mass model with a closed-form solution, consisting of an IP mass
and an additional mass for the swing leg, and an intermittent control method for this model, as illustrated
in Figure 1(c). We focus on the fact that a conservative system has a closed-form solution for the EoM,
providing the conditions under which the multi-mass system becomes a conservative system by imposing
holonomic constraints on the trajectories of the additional masses (specifically the swing-leg CoM)
during the SS phase. This modeling during the SS phase allows the robot to uniquely define its behavior
without feedback control, and the feedback controller during the double support (DS) phase preceding
the SS phase enables it to control walking behavior during the SS phase. In the numerical simulation, we
analyze the system energy during walking to verify that the model forms a conservative system, resulting
in the energy value becoming constant. Furthermore, we demonstrate simulations and robot experiments
to evaluate the intermittent controller. The results show that our intermittent controller allows tracking
the target walking speed, although previous intermittent control methods have difficulty tracking it.

The main contributions of this work are as follows:

1. Multi-mass model with closed-form solution: We introduce a dynamical system with a closed-
form solution of the EoM by forming a conservative system (Section 2.2) and propose a model
that allows for the adjustment of swing leg trajectories (Section 3.2).

2. Intermittent walking controller: We develop an intermittent walking controller based on the
multi-mass model, enabling walking behavior control through zero input during the SS phase
and feedback control during the DS phase (Section 3.3).

3. Walking velocity trackability: Our controller maintains a conservative system during the SS
phase, preserving constant energy, and tracks the target walking velocity (Sections 4.1.1, 4.1.2,
and 4.2).

4. Trajectory variety and stability: Our controller supports a variety of swing leg trajectories
(Section 4.1.2 and Appendix G) and demonstrates stability by returning to the target walking
velocity under external disturbances (Section 4.2).
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2. Preliminary
This section introduces related studies and fundamental dynamics necessary for the intermittent con-
troller of bipedal robots. First, existing models that feature closed-form solutions of the EoM are
introduced. Next, the dynamic properties required to extend this method to general robots with a
multi-mass model are described.

2.1. Reduced-order models with closed-form solutions for the equations of motion
Typical reduced-order models used in walking planners, such as the IP and LIP models, feature closed-
form solutions for their EoMs [12]. The SLIP model, depicted in Figure 2(a), primarily applied to
running, also admits a closed-form solution for the EoM during the flight phase, although obtaining
a closed-form solution for the stance phase remains challenging. These models rely on forces generated
by holonomic constraints between the CoM and the foot contact point. Under specific conditions, these
holonomic constraint forces enable closed-form solutions.

Typical models, such as the LIP model [14] and the IP model [12], exhibit linear trajectories in their
respective coordinate systems (LIP: Cartesian coordinates, IP: polar coordinates). As a result, the EoMs
of these models are expressed as second-order linear differential equations, as shown below:

LIP: ẍ = g

h
x, f = mg/ cos θ , (1a)

IP: θ̈ = g

l0

sin θ , f = mg cos θ − ml0θ̇
2, (1b)

where g and m denote gravitational acceleration and mass, respectively; x and h represent the CoM posi-
tion and height in the LIP model; l0 denotes the pendulum length in the IP model; and θ and f represent
the pendulum angle and the force applied to the CoM. These variables are illustrated in Figure 2(a).
Notably, the EoM of the SLIP model during the flight phase is also represented by a second-order linear
differential equation with a constant gravitational force. Consequently, the EoMs of these models admit
closed-form solutions.

The CoM trajectory derived from models with closed-form solutions simplifies the estimation of
future states. In scenarios without additional forces other than f , as shown in Figure 2(a), the model’s
trajectory can be uniquely determined by the closed-form solution, independent of the integration path.
These models have enabled the development of various controllers that facilitate trajectory planning
and stabilization. Notable examples include controllers based on orbital energy [14] and divergent
components of motion [36].

2.2. Alternative derivation for reduced-order model to yield closed-form solution
To construct a model that allows for closed-form solutions of the EoM, shaping the differential equa-
tions into a specific form is often required, typically using an intuitive approach [14, 37]. Therefore,
the trajectory of the model was significantly constrained, which made it difficult to design arbitrary tra-
jectories and multi-mass models. On the other hand, focusing on the energy transformations described
by the EoM, forming a conservative system (equivalent to having ”constant of motion” and ”conserved
energy”) is a sufficient condition for a model to yield a closed-form solution of the EoM. Both the LIP
model (1a) and the IP model (1b), which yield closed-form solutions of the EoM, are conservative sys-
tems. Therefore, as an alternative approach to obtaining models with closed-form solutions, the concept
of the conservative system is essential, and modeling the targeted dynamics as a conservative system
is key for constructing the intermittent control method. The following section introduces the EoM of a
single-mass model, explains how to construct a conservative system for the EoM, and provides detailed
examples of models with a conservative system.

First, we introduce the EoM of a single-mass model, with its mass and position denoted as mp and
pp, respectively. The EoM for this model, with an external force f and moment τ applied to the CoM
position, are as follows:
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(a) (b)

Figure 2. Typical reduced-order models. panel (a) shows examples of reduced-order models that
abstract bipedal locomotion. panel (b) shows the definition of mass model.

mpp̈p = mpg + f , (2a)

Ipθ̈ p = τ , (2b)

where mp, Ip, and g represent the mass, inertia, and gravitational acceleration for the CoM, respectively,
as shown Figure 2(b). θ̇ p represents the angular velocity around the CoM. Assuming that the external
force f and moment τ generated within the system can be designed arbitrarily, (2a) and (2b) can describe
the centroidal dynamics for any single-mass model [12].

Second, we present how to form a conservative system for the EoM. By multiplying (2a) by ṗp and
(2b) by θ̇ p, their time-integral quantities represent energy. The total system energy can then be calculated
as follows:

E mec = 1

2
mpṗT

p ṗp + 1

2
Ipθ̇

T

p θ̇ p + mpgTpp −
∫

f T ṗpdt −
∫

τ T θ̇ pdt. (3)

When the closed-form solution for energy is a time-independent function, the quantity E mec becomes
a conserved quantity (conserved energy) with a constant value. In the case of unknown f and τ , E mec,
as shown in (3), includes a time-dependent term. If this term can be resolved in a time-independent
manner, the energy in (3) becomes constant, representing a constant of motion and conserved energy.
Thus, even for a model where the system itself generates external forces, the dynamical system of the
model is considered conservative if both

∫
f T ṗpdt and

∫
τ T θ̇ pdt are independent of time.

Last, we introduce example models with dynamical systems that form conservative systems. Given
specific forms of conditions (the left-hand side of the equation), the energy of the external force and
moment can be represented as time-independent terms:

f = j(pp) ∧ J(pp) =
∫

j(pp)dpp ⇒
∫

f T ṗpdt = J(pp) + Const, (4a)

τ = q(θ p) ∧ Q(θ p) =
∫

q(θ p)dθ p ⇒
∫

τ T θ̇ pdt = Q(θ p) + Const. (4b)

Examples such as the LIP and IP models, which incorporate the constraint forces (1a) and (1b) providing
holonomic constraints, result in conservative systems, as illustrated in the following examples:

LIP: Emec = 1

2
mẋ2 − 1

2
m

g

h
x2 = Const ⇒ x = ±

√
h

g
ẋ2 − 2h

mg
Emec, (5a)

IP: Emec = 1

2
ml2

0θ̇
2 − mgl0 cos θ = Const ⇒ θ = arccos

(
l0

2g
θ̇ 2 − Emec

mgl0

)
, (5b)

where l0 is the support leg length of the IP model. Note that these equations represent the conserved
energy and the solution of the EoM; however, the primary significance lies in forming a conservative
system, which ensures that the solution to the EoM is uniquely determined, rather than focusing solely
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Figure 3. Overview of robot control. The ”robot” corresponds to Section 3.1 in numerical simulations
and to the actual robot in experiments. The ”planner model,” which includes the swing-leg trajectory
described in Section 3.2, is implemented as described in Section 3.3.1. The ”kick controller” is detailed
in Section 3.3.2. In this paper, ”zero input” refers to the absence of control input applied to the model.

on solving the EoM explicitly. Applying appropriate holonomic constraints allows the development of
a model with a closed-form solution of the EoM for a multi-mass model, enabling intermittent control,
including motions that generate additional external forces, such as swing motions.

3. Proposed method
This section describes our proposed method, which includes modeling approaches for the intermit-
tent controller aimed at making the motion during the SS phase a conservative system by applying
holonomic constraints to a multi-mass model, including swing-leg motion. An overview is shown in
Figure 3. First, we present the EoM and energy equation for a pendulum mass model with an additional
mass. Next, we explain the conditions under which the dynamical system of the model becomes a con-
servative system. Lastly, we outline the implementation of a swing trajectory during the SS phase and
the control strategy for regulating the robot’s walking speed by adjusting the kicking energy during the
DS phase.

3.1. Equation of motion and energy for multi-mass model
A multi-mass model consists of a base single mass and an additional mass, as shown in Figure 1(b),
with variables listed in Table I. The positions of these masses are denoted as pp and pa, respectively.
The pendulum mass represents the partial CoM of the robot, excluding the swing leg. In addition,
θ p denotes the angular component of the single mass in the polar coordinate system. Under the
assumption:

Assumption 1. The foot is in contact with the ground during the SS phase,
the angular component θ p represents the support leg angle, as shown in Figure 1(b). Hereinafter, we
define the mass of the single mass as the ”pendulum mass.” It should also be noted that more than two
additional masses can be added. Let the force and moment required to represent the pendulum mass
model be f s and τ s and let the force and moment from the additional mass to the pendulum mass be f r

and τ r, respectively. The forces and moments acting on the pendulum mass are as follows:

f = f r + f s, (6a)
τ = τ r + τs. (6b)

Note that in the case of point contact, moments generated at the CoM are essentially converted
into translational forces, resulting in τs = 0. Furthermore, in most cases, the CoM-ZMP model is
employed as the support leg model [35], meaning no moments arise from the representative ground
contact point. Additionally, as our robot uses a point-contact leg design, the following assumption is
introduced:

Assumption 2. No moments are generated from the assumed contact point.
A similar assumption holds for systems without point contact if the ZMP is considered the contact point
of the support leg. Furthermore, the dynamics model of the pendulum mass (fs) corresponds to models
such as (1a) or (1b). In this study, the IP model is adopted.
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Then, the EoM of the multi-mass model is derived by substituting (6a) and (6b) into (2a) and (2b),
respectively. The resulting force f r and moment τ r are expressed as follows:

f r = −ma

(
p̈a + g

)
, (7a)

τ r = (pp − pa) × (−f r

)
, (7b)

where the position and force of the additional mass ma are denoted as pa and f a, respectively. The time-
dependent term in (3) generated by f , and τ is extended as follows:∫

f T ṗpdt +
∫

τ T θ̇ pdt =
∫

f T
r ṗpdt +

∫
τ T

r θ̇ pdt +
∫

f T
s ṗpdt, (8)

where the term for the pendulum mass model depends on the specific model employed. Note that, in
this paper, we use the spring model, as described in Appendix A. The energy from f s also consists of
conserved energy, which can be added linearly to the energy term as the rightmost term of (8). Details
regarding f s and its corresponding energy are provided in Appendix A. For simplicity, the following
section presents the derivation while ignoring f s. The time-dependent term of (3), excluding f s, is then
given as follows:∫

f T
r ṗpdt +

∫
τ T

r θ̇ pdt = −ma

∫
(p̈a + g)T ṗpdt + ma

∫ (
(pp − pa) × (p̈a + g)

)T
θ̇ pdt, (9a)

where the dynamical system is conservative if the integrals of both the force and moment terms in (9a)
are expressed as time-independent primitive functions (i.e., indefinite antiderivatives that are not time
dependent). To obtain such time-independent antiderivatives, we introduce holonomic constraints for
the trajectory of the additional mass pa, as exemplified by (4a), (4b), (5a), and (5b) in Section 2.2.

3.2. Conservative system for multi-mass model with holonomic constrained trajectory
The holonomic constraint for the trajectory of an additional mass can be provided by an affine
transformation, resulting in a posture-dependent trajectory as follows:

pa = Capp + Ba, (10)

where the parameters Ca and Ba represent a square matrix and a vector, respectively. In walking, the leg
must contact the ground at a specific body position at the end of the SS phase. This holonomic constraint
(10) ensures that the leg reaches a target position corresponding to a specific robot posture, as illustrated
in Figure 1(c). Furthermore, as the holonomic constraint is an affine transformation of pp, the trajectory
of the swing mass can be flexibly adjusted as long as it remains within the physical constraints of the
system, such as the joint range of motion limitations.

Conserved energy for the holonomic constrained trajectory cannot be directly obtained using (10)
because some terms in (9a) do not have time-independent antiderivatives. Here, assuming that the pen-
dulum mass position pp during the SS phase follows is similar to human walking, modeled as an inverted
pendulum [2, 3]:

Assumption 3. The length of the support leg during the SS phase isconstant,
most terms of the energy in (9a) can be expressed as antiderivatives, as detailed in Appendices C, D, and
E. Under this assumption, the translational kinetic energy in (3) becomes zero, and the inertia matrix
simplifies to Ip = mpl2. Consequently, the kinetic energy terms in (3) can be obtained as follows:

1

2
mpṗT

p ṗp + 1

2
Ipθ̇

T

p θ̇ p = 1

2
mpl2θ̇

T

p θ̇ p = 1

2
mpṗT

p ṗp. (11)

Furthermore, the remaining terms, which include Ba, are small in magnitude, as shown in (E1).
When the following condition is given:

Condition 1. Ba = {0, bz},
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the time-dependent term is approximated to be zero, as shown in (E2), resulting in the energy being
expressed as follows:

E mec = E kin + E pot + Es = Const, (12a)

E kin = 1

2

(
mp + ma|Ca|

)
ṗT

p ṗp, (12b)

E pot =
(
mpg + ma|Ca|C−1

a g
)T pp − ma(Ba × g)Tθ p. (12c)

Furthermore, when the following condition is given:

Condition 2. Ba � 0,

the antiderivative of (9a) can be obtained without any approximation, which ensures that the energy
equation has no time-dependent terms, as explained in Appendix E. Consequently, for the two-
dimensional (2D) plane case, the system energy E mec calculated from (3) is derived as follows:

E pot =
(
mpg + ma|Ca|C−1

a g
)T pp, (12d)

where |Ca| is the determinant of Ca. Then, the antiderivative of the system energy E mec can be obtained.
Note that the energy Es depends on the pendulum model, as described in Appendix A. This describes
a system that possesses a uniquely determined closed-form solution for its trajectory. Importantly, the
objective is not merely to find the closed-form solution but to configure the system such that the initial
state uniquely defines the SS phase behavior. Additionally, (10) represents an ellipse centered at an
arbitrary position. Condition 1 corresponds to an ellipse centered at an arbitrary position along the z-axis,
while Condition 2 corresponds to an ellipse centered at the origin. These elliptical trajectories allow for
rotation and, except for Condition 2, introduce redundancy that enables the design of various nonlinear
trajectories. The flexibility to define various trajectories is demonstrated in the validation section.

3.3. Controller implementation: swing-leg trajectory and kicking
The overview of the controller system is shown in Figure 3. As explained in Section 1, no control input
(zero input of kick velocity l̇f ) is applied to the model (referred to here as the planner model) during
the SS phase, and feedback control is only applied during the DS phase. When a robot follows the con-
strained trajectory (10), the motion during the SS phase can be uniquely determined before the SS phase
begins (at the end of the DS phase) by referencing the current energy value (12a). The following section
introduces the proposed constrained trajectory and kick controller implementation. This implementation
includes controlling the robot towards the desired motion via the constrained swing-leg trajectory and
making energy adjustments during the DS phase, corresponding to foot placement control and kick
control. Note that we focus on the control of bipedal robots on a 2D plane in the following sections.

3.3.1. Planner model: swing trajectory
Swing trajectory, defined by (10), has parameters Ca and Ba for each phase, which is specified by setting
the positions of the pendulum mass and swing-leg mass, pp and pa, at the beginning and the end of each
swing phase and solving a simultaneous equation using (10). In an actual robot, the swing-leg trajectory
often needs to be adjusted to change the stride length and the clearance between the foot and the ground
throughout the swing motion in the SS phase of walking. Therefore, as shown in Figs. 4(a) and (b),
we implement a constrained swing-leg trajectory decomposed into three phases: phase (I) [swing-up
motion, between events i and ii], phase (II) [swing-down motion, between events ii and iii], and phase
(III) [contacting the ground with a relatively fixed swing leg, between events iii and iv], as shown in
Table II and Figs. 4(a) and (b). This decomposition allows for the adjustment of foot clearance and
stride length.
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(a) (b) (c)

Figure 4. Event, swing phase, variable, and parameter definitions during the SS phase (swing phase)
and image of controller implementation. The meaning of each event is shown in Table II and Table III.
For simplicity, the CoM position of the swing leg is assumed to coincide with the foot position.
Additionally, the green circle represents a circle with a radius of liv

a . Panel (c) displays the controller
image of one of the intermittent control methods [10].

First, we defined pi
p and pi

a as the current positions of each mass during the DS phase. During the
SS phase, each position is defined as the position when the foot leaves the ground at the moment of
transition from the previous phase.

Second, each mass position for swing phase (II) is defined as follows:

pii
p = [0, ls]

T , pii
a = [

lii
a , hii

a

]T
, (13a)

where hii
a , ls, and lii

a denote the target height of the swing-leg mass at the midstance posture, the support-
leg length, and the difference in the x-axis between pii

p and pii
a , respectively. Note that the support leg

length ls during the SS phase is constant under Assumption 3.
Third, let the stride length be denoted as liv

a . Additionally, we assume that the length from the swing-
leg mass position to the pendulum mass position when the leg touches the ground (event iv) is the same
as ls. Then, each mass position for swing phase (III), representing the positions when the foot contacts
the ground as shown in Figs. 4(a) and (b), is determined as follows:

piv
a = [

liv
a , 0

]T
, piv

p = [ls cos α, ls sin α]T , where α = cos−1

(
liv
a

2ls

)
. (13b)

Last, we define the swing end clearance hiii
a to ensure there is some clearance between the foot and

the ground when the swing motion ends. This clearance ensures that the swing motion ends with the
foot slightly above the ground. Each mass position for swing phase (III) is obtained from hiii

a and liv
a as

follows:

piii
a =

[
cos β − sin β

sin β cos β

]
piv

a , piii
p =

[
cos β − sin β

sin β cos β

]
piv

p , where β = sin−1

(
liv
a

hiii
a

)
. (13c)

Using these positions and (10) for solving the simultaneous equations, the parameter Ca and Ba for each
phase can be obtained. By following these trajectories, the robot motion during the SS phase (swing
phase) can be uniquely determined by the energy value before the SS phase.

3.3.2. Kick control
We implement feedback control during the DS phase, based on Hodgins’s walking controller [10], which
itself is based on the Raibert controller [29], as illustrated in Figure 2(c). According to Hodgins’s walking
controller [10], walking speed is regulated through kick control applied as feedback control inputs during
the DS phase. The kick control during the DS phase compensates for the energy dissipated through
impacts and viscosity during leg touchdown, thereby maintaining or modulating walking speed during
the SS phase. While additional controls, such as foot placement control to adjust stride length and body
attitude control to maintain the robot’s upper body upright during the support phase, can be applied, the
stride length was fixed in this study, as in Hodgins’s controller.
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The target kicking energy during the SS phase is calculated using the trajectory parameters Ca and
Ba and the position and velocity of the pendulum mass as E mec = E(pp, ṗp, Ca, Ba). Here, Ca and Ba can
be derived from lii

a , hii
a , hiii

a , and liv
a . Note that the parameters Ca and Ba for phase (I) are determined when

the rear leg leaves the ground during the DS phase. The process involves using the energy function to
calculate the energy error and modulate the robot’s energy through kick control to follow the target
velocity. The energy error is obtained as follows:

E err = E(pd
p, ṗd

p, Ca, Ba) − E(ps
p, ṗs

p, Ca, Ba). (14)

This energy can be supplied to the robot in any form, depending on the robot’s configuration.
A kicking motion is applied during the DS phase to minimize the energy error at the start of the

SS phase. Note that to control the velocity at midstance, the energy calculation for swing phase (I) is
required, and to control the velocity at the end position, the sum of the energy from swing phase (I) to
swing phase (III) is necessary. The energy error is continuously updated during the whole DS phase
until the rear foot leaves the ground. The energy can be generated in various forms. In the subsequent
experiments, the energy is generated as a forced displacement of a spring. We implement PID control to
minimize energy errors using actuator speed as the control input for the robots we employ, as described
in a previous study [15]. Let the time derivative of lf be defined as the leg velocity l̇f . The kick control
command l̇ cmd

f with the PID controller is given as follows:

l̇ cmd
f = kpE err + ki

∫
E errdt + kd

d

dt
E err, (15)

where the parameters kp, ki, and kd are the proportional gain, the integral gain, and the derivative gain,
respectively. Additionally, the E err is given by (14). In our verification, we only used p control, so ki and
kd were set to zero. The p gain parameters were kp = 5.0 × 10−5 in the numerical simulation, kp = 0.6 in
the Mujoco simulator experiment, and kp = 0.15 in the hardware experiment.

4. Verification
This section presents the verifications of the proposed method, employing two distinct types of verifica-
tions. The first involved comparative verification through numerical computations of the EoM. Through
comparing various trajectories with our proposed trajectories, we verified that our method’s model forms
a conservative system by analyzing the energy during walking. Additionally, we demonstrated through
comparisons that our controller could track different target walking velocities. The second involved ver-
ification with robot experiments to evaluate its performance as an intermittent controller. We verified
that our intermittent controller could track different target walking velocities.

In the evaluation, walking velocity was defined as the horizontal velocity of the pendulum mass at
the end of swing phase (I). The current energy value during swing phase (I) was calculated from the
current velocity and position of the pendulum mass, as well as the parameters Ca and Ba for phase (I). Let
the target horizontal velocity be ẋd

p; the target position and velocity of the pendulum mass at midstance
were defined as pd

p = {0, l0}T and ṗd
p = {ẋd

p, 0}T , respectively. The target energy value during swing phase
(I) was derived from the target horizontal velocity ẋd

p at midstance during the SS phase, along with the
parameters Ca and Ba for phase (I). Tables IV and V list the parameters used in each verification.

4.1. Varification by numerical simulation
The numerical simulation numerically integrated (2a), (2b), (7a)∼(7b), and (A1)∼(A4) using the Euler
method. Note that the moment term (7b) was converted to translational force as ground reaction force.
The constrained trajectory of the proposed method was described in Section 3. For comparison, a
simple swing-leg trajectory provided in Appendix F employed a linear trajectory depending on the
pendulum mass position, referred to as the “linear length interpolation.”s In addition, we employed
cubic spline interpolation and Bézier polynomial interpolation for comparison, with target positions
listed in Table IV. Table IV also lists the parameter values used for the numerical simulation. The energy
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(a) (b)

Figure 5. Energy profile during the SS phase when the target velocity is 0.2 m/s. To compare the red and
blue lines, an offset value is added to the vertical axis for the blue lines, but the scale remains consistent
for each line. The red lines show the results of our proposed method, where each line corresponds to the
trajectories shown in Figs. 6(d) and (e).

calculations for kick control in the proposed method used the energy described in Section 3.3.2. For the
comparative methods, the sum of the mechanical energy of both the pendulum mass and the additional
mass was used.

4.1.1. Energy analysis
Energy profiles for the proposed controller and the other interpolation methods are shown in Figure 5(a)
and (b). The figure displays the mechanical energy of the proposed controller (12a) (plotted as red
lines) and the mechanical energy of the other interpolations (plotted as blue lines) during swing phases
(I) and (II) when the target velocity is 0.2 m/s. The solid red line for Condition 1 (referred to as pro-
posed method 1) represents the energy calculated using (12d), while the dashed red line for Condition 2
(referred to as proposed method 2) represents the energy calculated using (12c). Note that swing phase
(III) is not shown because its duration is short. The blue lines are nonlinear and not constant, with
differences between the beginning and end of phase values of 1.2386, 0.7945, and 1.3000 J in swing
phase (I), and 0.4932, 0.4019, and 0.6900 J in swing phase (II) for the dashed, dash-dotted, and dotted
lines, respectively. The controller provides a large force (energy) at the beginning and end of the swing
phase, resulting in non-constant mechanical energy. Therefore, the energy from these interpolations is
not conserved energy, and thus, it is a time-dependent function and cannot be used as a target quantity
for intermittent control. In contrast, the red lines are approximately linear and constant, with differences
between the beginning and end of phase values of 0.0355 and 0.0466 J during swing phase (I), and
0.0385 and 0.0380 J during swing phase (II) for the solid and dashed lines, respectively. This indicates
that the energy value can be used as a target quantity. Overall, the energy calculated by (12a) does not
exhibit significant changes and can be regarded as conserved energy. Therefore, the value of energy at
the beginning of motion can uniquely determine the motion. Note that while the scales are consistent
across the graphs, the conserved energy changes discontinuously when transitioning from phase (I) to
phase (II). This occurs because the coefficients Ca and Ba change between phases, causing the conserved
energy value (12a) to switch discontinuously. However, these changes are predetermined during the DS
phase, allowing the target energy for each phase to be predefined and uniquely specified. For simplicity
in this verification, the coefficients Ca and Ba were switched discontinuously. Nonetheless, it is also pos-
sible to transition them continuously, ensuring smooth velocity connections. In either case, the motion
can be uniquely determined in advance.

4.1.2. Velocity trackability evaluations
To evaluate the intermittent controller, we conducted simulations and robot experiments to determine
whether the robot could track the target walking velocity. In the numerical simulations, we compared
the proposed method with other interpolation methods, which are the same as those described in the
previous section. Additionally, we tested our controller in robot experiments. The parameters for the
evaluation are listed in Tables IV and V.
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linear length interpolation.

Cubic spline interpolation.

Beige polynomial interpolation.

Our proposed method 1.

Our proposed method 2.

when the target velocity is 0.42m/s.

An individual
simulation result.

Elapsed simulation time.

Simulation starts here

Swing leg mass and trajectory (left leg)
Swing leg mass and trajectory (right leg)
Pendulum mass and trajectory

Target height

Target velocity

(a)

(b)

(c)

(d)

(e)

Figure 6. Trajectories of each mass for various swing-leg trajectory generation methods and the corre-
sponding time-elapsed velocity changes. In the left diagrams of each panel, blue and red represent the
trajectories of the left and right feet, respectively, while the green dashed line indicates the target height.
In the right diagrams of each panel, the dashed line represents the target velocity, and the dots plot the
observed velocity results. Note that the velocities converge near the purple region in each result. For
simplicity, the CoM position of the swing leg is assumed to coincide with the foot position.

In the numerical simulation, we used the same simulation explained in Section 4.1. The target veloc-
ities ranged from 0.1 to 0.5 m/s in increments of 0.02 m/s. The initial velocity for each simulation was
set to the corresponding target velocity, and the actual velocity was measured for 10 s. The simulation
results are shown in Figure 6. Each graph presents 21 individual simulation results. The horizontal
axis represents the target velocity, while the vertical axis represents the actual velocity at midstance.
The color indicates the elapsed time, with purple indicating a steady state. Convergence to the dotted
line indicates that the actual velocity tracked the target velocity. Note that, to ensure comparability across
the graphs, the target energy was fine-tuned by adding a constant offset (the same value for all conditions)
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(a) (b) (c)

Figure 7. Comparison of velocity trajectories. Panel (a) illustrates changes in forward velocity with
and without the proposed method. Panels (b) and (c) present phase diagrams of forward and vertical
velocities, respectively. The black dashed lines in all panels indicate the target velocity at the mid-stance
position.

so that the controller could achieve target velocity tracking at 0.3 m/s. The other interpolation methods
failed to track the target velocity, as shown in panels (a) ∼ (c). In these cases, the actual velocity con-
sistently exceeded the intended velocity in the lower speed range as time elapsed due to the absence of
kicking motion during the DS phase. In the higher speed range, even with kicking motions, the methods
failed to reach the target velocity. This result suggests that the swing-leg mass unintentionally added
excessive energy or supplied negative energy (power). Particularly in the lower speed range, in order
to follow the target velocity, negative energy must be generated during the DS phase. However, this is
impossible due to the unilateral contact of the supporting feet. In contrast, thanks to the appropriate mod-
eling that forms a conservative system, the results for the proposed controller, shown in panels (d) and
(e), indicate that the actual velocity successfully converges to the target velocity. For reference, results
with different parameter settings for panels (d) and (e) are provided in Appendix G. These controllers
allow for flexible trajectory adjustments, and it should be noted that the trajectories can be freely tuned
to various nonlinear paths. Our method emphasizes that, due to the capability to uniquely define the
robot’s trajectory before the start of the SS phase, intermittent energy adjustments during the DS phase
enable no control in the SS phase.

Additionally, Figure 7 illustrates the velocity trajectories for the linear length interpolation and pro-
posed method 1, as shown in Figure 6. In Panel (a), the concave apex is intended to reach the dashed line
at 0.2 m/s, which represents the target velocity for the simulation. While both methods begin from the
same initial state, where the target and actual velocities are identical, the blue line gradually accelerates
and diverges from the dashed line. In contrast, the proposed method (red line) remains close to the target
velocity, periodically reaching it. Panels (b) and (c) display the phase diagrams of velocity for each
method. The proposed method maintains a consistent velocity trajectory over time, whereas the linear
length interpolation gradually transitions and converges to a trajectory distinct from the initial state.

In this study, we compared our proposed method with other interpolation methods for swing-leg tra-
jectories, focusing on whether intermittent control could effectively regulate the robot walking behavior
in each approach. For methods other than the proposed method, significant velocity drift was observed.
This indicates the presence of additional energy variations not accounted for by the motion and potential
energy of the pendulum mass and swing-leg mass, which may potentially lead to unintended acceler-
ations and decelerations caused by the swing-leg motion. To address this issue, it would be necessary
to apply negative energy through upper body motions as feedback control during the SS phase. This
approach aligns with existing methods using the LIP model [18, 14], which continuously compensates
for momentum components to ensure the model adheres to its trajectory during the SS phase. However,
such continuous feedback hinders this study’s primary goal, which is intermittently controlling the
robot. In contrast, our proposed method provides a practical and effective solution, enabling intermittent
control while addressing the limitations of existing approaches.
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(a) (b)

(c)
(d)

(e)

Figure 8. The experimental results for velocity trackability with our bipedal robot with four degrees of
freedom constrained in a two-dimensional plane. Panel (a) shows the dynamics simulator results, and
panel (b) shows the hardware experiment results. The blue dots indicate the average velocities at the
midstance, and the blue area represents the standard deviation. Panel (c) illustrates the progression of
forward velocity when the target velocity is set to 0.3 m/s, and panel (d) depicts the trajectories of each
mass during this condition. The blue circles represent the left foot, and the red circles represent the right
foot. Panel (e) shows the stability verification results under external disturbances applied under the same
conditions as panel (c). The upper part of the graph indicates the walking steps where external forces
were applied to the pendulum mass: red numbers represent −10 N, and blue numbers represent + 10 N
in the x-axis direction.

4.2. Velocity trackability evaluations by robot experiment
In the robot experiments, we verified that the proposed controller could track the target velocity in the
dynamics simulator using Mujoco and actual hardware with our developed bipedal robot [15, 21], as
shown in Figure 8. The bipedal robot has four degrees of freedom constrained to a two-dimensional
plane. The conversion from the swing-leg trajectory to the robot is detailed in [15]. We measured the
walking data of the robot for up to 10 footsteps in the simulation experiments and 6.5 m (approximately
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20 footsteps) in the hardware experiments at each target velocity. In the simulation experiments, tar-
get velocities ranging from 0.10 to 0.50 m/s in increments of 0.05 m/s were given to the robot. In the
hardware experiments, target velocities ranging from 0.10 to 0.50 m/s in increments of 0.20 m/s were
used. The walking velocity for each step was measured as the average velocity at the midstance of the
hip for |θ | < 0.005 rad (depicted in Figure 1). The mean velocity at the midstance is represented as a
dot, and the standard deviation is illustrated as a blue line. The results indicate that the average veloc-
ity successfully tracked the target velocity. Note that the standard deviation increased at lower speeds,
which can be attributed to the difficulty of maintaining stability at very low walking speeds. This is
because the controller parameters were tuned for a target velocity centered around 0.3 m/s, and the same
parameters were used across all simulations. In the hardware experiments, the standard deviation was
relatively large, likely due to the robot’s connected boom system, which generates characteristic vibra-
tions. Nonetheless, the experimental results demonstrated that the average walking velocity converged
to the target velocity.

Figure 8 (c), (d), and (e) illustrates the velocity trajectory, CoM trajectories, and stability under exter-
nal disturbances for the target velocity of 0.3 m/s shown in Panel (a). In Panel (c), it can be observed
that the peak velocity reaches the target velocity indicated by the dashed line, repeatedly tracking it.
Panel (d) depicts the corresponding trajectories, with the paths at the center of the graph and the circles
representing the CoM trajectories of the legs. In swing phase (I), the trajectory forms an elliptical path,
while in swing phase (II), it transitions to an ellipse resembling a straight line. These trajectories are
determined by (10). Interestingly, the foot trajectory exhibits a characteristic path. This trajectory is not
arbitrarily defined but rather emerges naturally due to the leg linkage mechanism when the swing-leg
CoM follows an elliptical trajectory. Notably, this resembles the CoM trajectory observed in human walk-
ing, as described in [19]. Lastly, Panel (e) demonstrates stability under external disturbances. External
forces (+10 N or −10 N) were applied to the pendulum mass at specific timings during walking, as
indicated by the red and blue numbers in Panel (e). These forces temporarily caused deviations from
the target velocity, but once removed, the velocity consistently returned to the target value. The forces
were applied multiple times, repeatedly testing the robot’s ability to recover to the target velocity,
demonstrating sufficient stability for velocity tracking. This analysis highlights the stability of the pro-
posed method under external disturbances, with consistent recovery observed regardless of the force
direction.

5. Conclusion and future works
In this paper, we proposed an intermittent walking control method for the multi-mass model to con-
trol robot behavior by adjusting the energy during the DS phase and using zero-input control with
a constrained swing-leg trajectory during the SS phase. The proposed method models the dynamics
of a multi-mass system during the SS phase, including the swing-leg mass, as a conservative system.
This allows the dynamical system to have a closed-form solution of the EoM, with behavior uniquely
determined by the initial state. Furthermore, this modeling enables control of robot behavior with inter-
mittent control inputs. The numerical simulation results demonstrated that the dynamical system of our
proposed method is conservative. Both simulations and actual robot experiments confirmed that the pro-
posed intermittent controller enables the robot to stabley track the target walking velocity. These results
indicate that robot motion, including that of the multi-mass model, can be intermittently controlled by
providing holonomic position constraints.

Through the numerical simulation, it was observed that the conserved energy changed discontin-
uously during the transition from phase (I) to phase (II), as shown by the blue line in Figure 6.
While this discontinuity did not cause significant issues in the experiment, it evidences discontinuous
acceleration of the swing leg. Therefore, developing a smoother method for phase transitions is
anticipated.
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Table I. List of variables and parameters. Each position is a two-dimensional vector as p∗ = [x∗, y∗].

Type Var. Description Type Param. Description
Variables’ subscript X p Pendulum mass Physical m∗ Weight of mass for subscript ∗

X a Additional mass I∗ Inertia for subscript ∗

Xr Reaction from X a g Gravity constant
Xs Support leg Length l Support leg length

Superscript Xd Target value for X l0 Natural length
Xs State value for X lf Forced displacement

Table II. List of events during the SS phase.

Sup. Description
Xi Swing Begin (leg lift off)
Xii Midstance (upright posture)
Xiii Motion Fix (stop swing)
Xiv Swing End (leg touchdown)

Table III. List of target position during swing
phase.

Param. Description of the target positions
lii
a x-axis of pii

a (tuning parameter)
hii

a z-axis of pii
a (swing max height)

hiii
a z-axis of piii

a (swing end clearance)
liv
s x-axis of piv

a (stride length)

Table IV. List of numerical simulation parameters.

Param. Value Param. Value
ma 1 kg lii

a 0 m
mp 10 kg hii

a 0.090 m
l0 0.5 m hiii

a 0.0122 m
pa = foot pos liv

a 0.30 m

Table V. List of parameters for robot experiments.

Param. Value Param. Value
ma 0.70 kg lii

a 0.085 m
mp 9.58 kg hii

a 0.280 m
l0 0.485 m hiii

a 0.032 m
pa = leg CoM liv

a 0.30 m
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In modeling the dynamics of the whole robot, the multi-mass model assumed in this paper adds addi-
tional masses to a pendulum mass. When more than two masses are added, their motions can influence
one another depending on tracking performance. Developing a method to mitigate these influences is a
research topic that will be researched further.

These extensions enable capturing a wide range of passive motions (zero-input control) before the
passive motion begins, allowing various motions and robots to take advantage of intermittent controllers,
which are energetically and computationally efficient. In the future, we aim to apply this method to
three-dimensional humanoid robots with upper bodies.
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A. Derivation of numerical simulation model
As shown in Figure 1(a), let the mass and the position of the pendulum mass model be mp and pp = xp, zp

T ,
respectively. Then, the EoM for the double mass model is given by (2a). For the case in which the force
f a is applied at the additional mass position pa, as shown in Figure 1(b), the external force f is calculated
as the resultant of two forces:

f = f r + f s, (A1)
where f r is directly applied from f a as shown in (7a). Assuming a spring mass model, f s is defined as
follows:

f s = −kpp + C(ṗp, pp). (A2)
The spring term is calculated as

k =
{

0 (|pp| ≥ l)

k0

(
1 − l

|pp|

)
(|pp| < l)

, (A3)

where l = l0 + lf . The spring force can be adjusted by displacement of the spring’s natural length lf . In
this model, the kick controller applies energy by adjusting the spring displacement lf . In addition, in
order to add a damper in parallel to the spring in (A1), the following term is added to the right-hand side
of (A2):
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C(ṗp, pp) =
{

0 (|pp| ≥ l)

−c0
pT

p ṗp

|pp|2 pp (|pp| < l)
. (A4)

In the paper, a small damper is included to stabilize the simulation. In our numerical simulation explained
in Section 4.1, the spring and damper constants are k0 = 10, 000 N/m and c0 = 500 Ns/m, respec-
tively. The simulation numerically integrated (2a), (2b), (7a)∼(7b), and (A1)∼(A4) using the Euler
method.

The energy of the spring is calculated as follows:

Es = 1

2

(kpp)2

k0

. (A5)

Note that we ignore the energy loss of the damper because the effect of the damper is small in our
simulation.

B. Relationships used for algebraic manipulation
Assuming that a leg is an inverted pendulum with contacting foot to ground (i.e., Assumption 1 and 3),
the following deformations are derived:

ṗp = θ̇ p × pp, and l2θ̇ p = pp × ṗp. (B1)

Following, we introduce transformation formulas related to the cross-product. The cross-product of
the inner product of two matrices and the cross product can be obtained as follows:

Capp × Cap̈p =
{

|Ca|(pp × p̈p) (if 2D)

|Ca|C−T
a (pp × p̈p) (if 3D)

, (B2a)

Capp × g =
{

|Ca|(pp × C−1
a g) (if 2D)

|Ca|C−T
a (pp × C−1

a g) (if 3D)
. (B2b)

These relationships are used for the derivative in the Appendix. D.
Note that we often use the following relation for antiderivative in Appendix D:

1

l2

∫
(pp × p̈p)

T(pp × ṗp)dt =
∫

(pp × p̈p)T θ̇ pdt =
∫

(θ̇ p × pp)
T p̈pdt

=
∫

ṗT
p p̈pdt = 1

2
ṗT

p ṗp. (B3)

C. Derivation of energy: force component
When the constraint position trajector, such as (10) to the pendulum mass, is given to (9a), the following
antiderivative, which is energy for the additional moment (7a), is obtained:

∫
f T

r ṗpdt = −ma

∫
(p̈a + g)T ṗpdt

= −magTpp − ma

∫
p̈T

a ṗpdt.
(C1)
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D. Derivation of energy: moment component
When the constraint position trajectory, such as (10) to the pendulum mass, is given to (9a), the following
antiderivative, which is energy for the additional force (7b), is obtained:∫

τ T
r θ̇ pdt =

∫
ma

l2

(
(pp − pa) × (p̈a + g)

)T
(pp × ṗp)dt

=
∫ (ma

l2
pp × p̈a

)T

(pp × ṗp)dt +
∫ (ma

l2
pp × g

)T

(pp × ṗp)dt

−
∫ (ma

l2
pa × p̈a

)T

(pp × ṗp)dt −
∫ (ma

l2
pa × g

)T

(pp × ṗp)dt. (D1)

Using the manipulations and relations (B1) ∼ (B3), the right-hand side of (D1) is extended as follows:∫ (ma

l2
pp × p̈a

)T

(pp × ṗp)dt = ma

∫
(pp × p̈a)T θ̇ pdt

= ma

∫
(θ̇ p × pp)T p̈adt

= ma

∫
p̈T

a ṗpdt, (D2a)∫ (ma

l2
pp × g

)T

(pp × ṗp)dt = ma

∫
(pp × g)T θ̇ pdt

= ma

∫
(θ̇ p × pp)Tgdt

= magTpp, (D2b)∫ (ma

l2
pa × p̈a

)T

(pp × ṗp)dt = ma

l2

∫
(Ba × p̈a)

T(pp × ṗp)dt + ma

l2

∫
(Capp × Cap̈p)T(pp × ṗp)dt

= ma

∫
(Ba × p̈p)

T θ̇ pdt +
{

1
2
ma|Ca|ṗT

p ṗp (if 2D)
1
2
ma|Ca|C−T

a ṗT
p ṗp (if 3D)

, (D2c)
∫ (ma

l2
p̈a × g

)T

(pp × ṗp)dt = ma

∫
(Ba × g)T θ̇ pdt + ma

∫
(Capp × g)T θ̇ pdt

= ma(Ba × g)Tθ p +
{∫

ma|Ca|(pp × C−1
a g)T θ̇ pdt (if 2D)∫

ma|Ca|C−T
a (pp × C−1

a g)T θ̇ pdt (if 3D)

= ma(Ba × g)Tθ p +
{∫

ma(|Ca|C−1
a g)T(θ̇ p × pp)dt (if 2D)∫

ma(|Ca|CT
a g)T(θ̇ p × pp)dt (if 3D)

= ma(Ba × g)Tθ p +
{

ma

(|Ca|C−1
a g

)T pp (if 2D)

ma

(|Ca|C−T
a g

)T pp (if 3D)
. (D2d)

E. Sum of total additional energy
From derivation as shown in Appendix C and D, the sum of total additional energy (9a) is obtained as
follows: ∫

f T
r ṗpdt +

∫
τ T

r θ̇ pdt = −1

2
ma|Ca|ṗT

p ṗp − ma

(|Ca|C−1
a g

)T pp

− ma(Ba × g)Tθ p − ma

∫
(Ba × p̈p)T θ̇ pdt. (E1)

The parameter of the remaining term, which cannot be integrated, is relatively small compared to other
parameters and can be ignored, allowing the system to assume an approximate conservative system.
Especially, when Ba = {0, bz}, Ba and p̈p are almost in the same direction because pp follows a circular
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(a) (b)

Figure 9. Swing-leg trajectories that show the comparative method and our method, respectively.

motion. As a result, Ba × p̈p can be approximated as nearly zero. Then, the sum of energy can be obtained
with a small approximation as follows:∫

f T
r ṗpdt +

∫
τ T

r θ̇ pdt � −1

2
ma|Ca|ṗT

p ṗp − ma

(|Ca|C−1
a g

)T pp − ma(Ba × g)Tθ p. (E2)

On the other hand, the remaining term includes Ba. Furthermore, (10) has redundant parameters for
obtaining a curve connecting two points. Therefore, we can give an arbitrary trajectory with Ba = 0.
When Ba = 0, the sum of energy is obtained as follows without approximation:∫

f T
r ṗpdt +

∫
τ T

r θ̇ pdt = −1

2
ma|Ca|ṗT

p ṗp − ma

(|Ca|C−1
a g

)T pp. (E3)

F. Generation of comparative swing trajectory
This section describes a method for generating a swing trajectory that is used for comparison with the
swing trajectory (10) of the proposed controller. We refer to this as the ”ignore-swing-mass trajectory.”
In order to make the velocity of the swing-leg mass position vary with walking velocity even if the target
walking velocity is changed and to linearly change the x-position and swing-leg length depending on
the pendulum mass posture, the ignore-swing-mass trajectory is given as follows:

x cmd
a = (1 + K ratio)

(
xs

p − xi
p

) + xi
a, (F1a)

l cmd
swg = (

l max
swx − l min

swg

) ∣∣xs
p − x cmd

s

∣∣ /
∣∣xs

p − xval

∣∣ + l min
a . (F1b)

When x cmda ≤ xps, xval = xi
a. When x cmda ≥ xps, xval = xd

a. In the simulation, we defined xd
a = xs

p + 0.25.
Moreover, when x cmda ≥ xps and l cmd

a ≥ l max
a , we set l cmd

a = l max
a . Then, the leg length control stops when

the leg length exceeds the maximum length (natural length of the springs). By changing K ratio, the
position at which the leg length control stops can be adjusted. In our simulation, to ensure that the
ignore-swing-mass trajectory has the same swing end clearance as the proposed controller, we used
l min
a = 0.40, l max

a = 0.50, and K ratio = 1.65.
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(a)

(b)
Figure 6 (d).

Figure 6 (e).

Figure 10. Numerical simulation results with different parameters compared to Figure 6(d) and (e).

G. Verification Results with Different Parameters
Figure 10 shows the results of the parameter variation experiments, based on the comparative verification
test in the main text (Figs. 6(d) and (e)). Panel (a) presents the results with modified parameters in the
forward direction, while panel (b) shows the results with modified parameters in the vertical direction.
Note that, for panel (a), the trajectory generation method from Figure 6(d) was used to make the changes
in the forward direction more comprehensible. apart from the parameters shown in the figure, all other
parameters remained unchanged. Both results confirm accurate tracking of the target velocity.
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